No Faster-Than-Light Neutrinos Yet

At the end of September, a paper was published with the provocative conclusion that neutrinos had been measured to travel faster than the speed of light. It was big news, and was widely reported in the media as a reasonably established finding (when in reality it had been released on arXiv, an open-access physics portal, but was not yet peer reviewed, and was subject to much eyebrow raising from physicists at large). In the past week, news has come out that there were some systematic sources of error, and the results are not necessarily accurate.

Here’s a quick recap of what the original experiment entailed:

  • a beam of neutrinos was generated at the Large Hadron Collider (LHC), and the beam was aimed through the Alps (ie, underground) to a detector in Italy called OPERA about 730 km away
  • the signal leaving the LHC is timestamped, using a highly accurate (and very carefully calibrated) GPS system
  • as the neutrinos leave the LHC, a light signal is sent to the same location in Italy via a fibre optic cable. This provides a time-of-flight for a light signal to compare to the time-of-flight for the neutrino signal.
  • when the light and neutrino signals are detected in Italy, they are timestamped using the GPS system, and the times of flight cane be compared
  • this repeated over and over again to reduce statistical errors in the measurements
Schematic diagram for the experiment.

The scientists reported that there was a difference in the times-of-flight of about 60 ns, with the neutrino beam reaching the detector before the light signal. Now, the scientists involved have found two sources of error, which, indicentally, mirror my hunch from when this first hit the news. First, the GPS equipment is operating far outside of its normal operating range, and so my not behave exactly as expected; this error is thought to produce a faster neutrino speed. But the second source of error is a loose connection for the fibre optic cable that carries the light signal, introducing a delay that may account for the difference in time elapsed for the two signals (light and neutrino).

I’m not at all surprised at this — when the paper was first put out, I thought it was only a matter of time before a systematic source of error was found. General relativity has held up spectacularly in every experimental test undertaken, and it would take a lot to upend all of that.

I was surprised that the group released their paper as early as they did, and without initial peer review, and I think that speaks to the authority that the scientific community confers on the CERN collaboration. If this exact paper had been written be a group at a small, less renowned institution (assuming they had all the equipment to do the experiment), would it have ever seen the light of day? Would a smaller group release very controversial results which naturally invite a huge amount of attention from popular media, without even subjecting them to peer review first? Would they ask for scrutiny from all and sundry, not just their peers?

I doubt it, because the stakes are too high. For a smaller, less authoritative group, the hit that their reputation could sustain could be devastating. No-one’s going to give CERN side-eye at everything they do from here on, because it’s CERN! They’ve done incredible work and have a very solid reputation. But if a group without that name backing did the same science and presented it that same way, there’s a good chance it’d be either ignored, chalked up to poor science or ineptitude, and probably wouldn’t be given much of a second look.

I bring this up not to cast aspersions at CERN — they do excellent work — but rather to highlight the weight that an authoritative name can carry in the scientific word. We like to think that science is objective and speaks for itself, and that good science will get the recognition it deserves regardless of who does it. This is not true — there’s plenty of excellent scientists who face all sorts of barriers (monetary, linguistic, social, etc) in their attempts to get their science visible. This isn’t to say that crackpots don’t exist — there’s plenty of people with a tenuous grasp of general relativity who insist that “Einstein was WRONG!”, though they are generally easily refuted — but this is a prime example of how having a big name collaboration helps people take a second look at your work, rather than just writing it off as an errant result.

I don’t think that this paper would’ve gotten as much attention from the scientific community (or the popular media, but they’re not the best arbiter of what’s new and important in science) had it not come from such an authoritative group. I think that, like me, most scientists would’ve said “there’s probably an error in the GPS or the cabling” and left it at that. An awful lot of scientists said that this time, but they typically said it after they’d read the paper; I doubt many of them would’ve bothered to read the paper had it not been from an authoritative collboration. It’s a disappointing realization, but it’s always good to have a reminder to check for our unconscious (or conscious) biases.

Leave a Reply

Your email address will not be published. Required fields are marked *

16 − fifteen =