Category Archives: Chemistry

The Flame Challenge Revisited

Since the winner of the Flame Challenge has been announced (congratulations to Ben Ames with his animated video!), I thought I’d, for the sake of some potential feedback, publish my humble entry and comment a bit on the challenge itself. For those of you who’re not sure what I’m talking about, the Flame Challenge was an initiative spearheaded by Alan Alda which sought an answer to a seemingly simple question: what is a flame?

A flaming matchstick.

What is this?

When Alda was 11, he’d asked this of his science teacher, and the teacher replied simply “it’s oxidation,” which is a thoroughly unsatisfying answer. In an effort to get people thinking about how to make science accessible to young people, Alda challenged the science community (and anyone else who was interested) to explain what a flame was in a way that an 11-year-old could understand it. Classes of 11-year-olds all over the US judged the entries, and the challenge will now become an annual initiative (though with a different question each year).

Here’s a few short paragraphs that I submitted.

Continue reading

Saponification, or Why Not to Buy The Discount Lutefisk

Soap is ubiquitous in modern life, in many forms, from hand soap to laundry detergent to shampoo. Chemically, soaps are alkali salts of fatty acids, and are formed by taking a fat or oil and combining it, either at room temperature or at or around the boiling point of the fat, with a strong alkali compound like sodium hydroxide. (Alkali compoounds are chemicals that have a high pH; please see the post on the pH scale for reference.) The alkali compound used is usually a hydroxide, either sodium, potassium, or occasionally lithium. All these hydroxides are very reactive, which is useful for forming soap, but they are also very corrosive, and so soapmaking must be done very carefully to avoid accidents.

A typical chemical reaction to create soap

A triglyceride is a fatty acid with three branches. It reacts with NaOH to produce soap molecules with a hydrophobic tail and a hydrophilic head and a molecule of glycerol.

At the heart of soap’s effectiveness is that soap molecules have two distinct parts. One part is hydrophobic (ie, does not mix will with water) and grabs on to dirt (which typically is oil based, ie, also hydrophobic) while the other part is hydrophilic (ie, mixes well with water).

A bit of dirt gets covered in soap molecules, all with the hydrophobic end attached to the dirt, with the hydrophilic end trailing like a string away from the dirt. This structure is sometimes called a micelle, though the term is not just used for soap.

A micelle is formed when soap molecules surround a bit of dirt.

A schematic of a micelle. The hrydrophobic tails stick to the dirt, and the hydrophilic heads point out towards the ambient fluid.

Lutefisk is made in a similar manner to soap, and it’s one of those things, like soy sauce, that I wonder how on earth someone figured out how to make it (and thought to try eating it). It’s a Nordic dish made by taking salted fish like cod, treating it with lye (ie, a very strong alkaline compound) for a couple of days, and then soaking it in water for several days to rinse out the caustic lye. Traditionally, the fish is treated with ash, which is alkaline but not nearly as strong as lye, and then buried for several months. Either way, the chemical reaction between the fats and oil in the fish and the lye needs to be stopped before all the fats saponify; though the whole point of making lutefisk is that some of the fats saponify, rendering the entire fish soap seems even more unsavory than only a partial rendering. The end result is a fish concoction that is somewhat gelatinous and falls apart easily, is either baked or broiled, and looks about as appetizing as you’d expect given how it’s made. I’ve never eaten it myself, but it’s got a reputation for smelling and tasting awful with a very unpleasant texture, but apparently some people genuinely enjoy it. While on description alone I can’t say as I’d recommend it, if you’re going to eat it, it seems especially prudent, given the chemistry involved in making it, to avoid the dented can on the discount shelf at the grocery store.

The pH Scale

There’s a common line in soap commericals that goes something along the lines of “This soap is pH balanced, for soft, smooth skin.” The claim about the soft, smooth skin may or may not be accurate, but what does “pH balanced” mean?

The pH scale is a measurement of the acidity of an aqueous (ie, water-based) liquid compound. The capital H indicates that it’s a measurement of hydrogen ions (denoted H+ in chemical notation); the definitive meaning of the p is lost to the sands of time. A low pH value means that the solution is acidic, and has more H+ ions than OH- ions, while a high pH means the solution is basic (or alkaline — the two terms are interchangeable) and has more OH- ions than H+. The more extreme the inbalance (ie, the lower or higher the pH) the stronger the solution, and the more likely it is to eat through your skin if you spill it.

A flask and a beaker with and acid and basic fluid respectively.

The fluid in the flask on the left is more acidic than the fluid in the beaker on the right is basic.

The precise value of the pH of a solution is given by the negative logarithm of the concentration of hydrogen ions in the solution, though there are compounds that can act as catalysts in specific solutions that will alter the measured pH. Logarithms are a useful way of describing quantities that vary of a wide range of scales. Mathematically, if x = b^y, y = log_b (x).

Logarithmic equations.

Logarithms are typically either in base 10 (ie, b=10) or base e (ie, b = e = 2.718…; these are also called natural logarithms). The most commonly known logarithmic scale is the Richter scale, which measures the strength of earthquakes. The Richter scale is a base 10 scale, so an earthquake of magnitude 6.0 is 10 times stronger than an earthquake of magnitude 5.0, and 1000 times (ie, 10^3 times) stronger than an earthquake of magnitude 3.0.

Similarly, the pH scale is a base 10 logarithmic scale. A solution of pH 4.0 is ten times more acidic than a solution of pH 5.0, and 10 times less acidic (ie, more alkaline) than a solution of pH 3.0. The scale runs from 0.0 to 14.0, (explain why zero can be reached due to catalytic reactions and whatnot)

pH scale

Click to enlarge.

The pH of a solution can be tested using a variety of compounds called indicators that are known to change colour at specific pH values. Indicators do not generally interact with the solution, and so do not drastically alter the chemical mix in the solution. An indicator can be added to a solution, and then the solution can be titrated (ie, another solution is dripped slowly into the original solution to reach a desired pH) until the indicator changes colour. The colour change of the indicator indicates that the solution has reached a specific pH. Litmus paper is a crude indicator: it will indicate if a solution is acidic or basic, but does not determine exactly how acidic or basic the solution is.

In a general sense, then pH balanced, means that the solution in question has the same pH as its surroundings. Skin has a pH of around 5.5, so in the context of facial soap, the manufacturer may be using “pH balanced” to mean that the soap has a pH around 5.5, so the soap will not undergo an acid-base reaction with (and thus irritate) the user’s skin.