In the last post, I glossed over the bit about how lightning has a hard time passing through air, so I thought I’d clarify (and hopefully this’ll be clear enough that I don’t need to keep up with this string of addenda and clarifications and can write about something new).
From the last post:
The net difference in electrical potential builds up, until the neutral air and water vapour in between the positive and negative regions can no longer sustain the difference, and a lightning bolt discharges the electrical energy. Air is a very good electrical insulator (ie, it is difficult for an electrical current to pass through the air), so a very large electric field can be sustained in the cloud before a lightning bolt discharges the stored energy, and returns at least part of the cloud to a neutral electrical state.
So what exactly is an electric field? It’s a region where, if a charged particle is placed, it will experience an electric force. It’s just like a magentic field: when a magnet (for example, a compass) is placed in a magnetic field (like the Earth’s planetary magnetic field), it experiences a force that aligns it (ie, the compass needle) in a particular way. Similarly, a charged dropped into an electric field will experience a force that pushes it in the field. Electric fields are created by a distribution of charges, either discrete or continuous:
Of course, the force experienced by a charge dropped into a field depends on the sign (positive or negative) of the charge. A negative charge will experience the opposite force that a positive force experiences, ie, the arrow heads all point in the other direction.
With lightning, it’s not a point test charge dropped into the cloud that creates the bolt, but rather that the charge distribution itself cannot be sustained any longer, and a bolt transfers charge from one region of the cloud to another and neutralizes the field.
The bolt travels through air, and air is not a vacuum, so the physical properties of the air (or any material that charge is attempting to move through) will affect how easily the charge can move through the material. Materials (and by materials I mean any state of matter, so it can include say glass, water, and air) can generally be classified as either insulators or conductors, depending on a property called conductivity. Electrical energy has a hard time travelling through insulators (like glass) which have a low conductivity, while it passes easily through conductors (like metals), which have high conductivity.